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HIGH-FREQUENCY CHANGES IN THE ORIENTATION OF

NEMATIC LIQUID CRYSTALS IN RADIO FREQUENCY

CROSSED ELECTRIC FIELDS

UDC 532.783V. M. Klement’ev, S. I. Trashkeev,

P. A. Statsenko, and T. D. Valinurov

The orientational dynamics of the director of a nematic liquid crystal located in radio frequency
crossed electric fields were studied by numerical calculations and experimentally. This system is
shown to be a physical object of nonlinear dynamics. Depending on the parameters of the problem,
the following types of states of the director were observed: stationary (an analog of the nonthreshold
Freedericksz transition), periodic, quasiperiodic (multimode), and stochastic of the strange attractor
type. In the calculations, all states were obtained by solving a deterministic system of two time-
dependent nonlinear differential equations of the first order with no electrohydrodynamic terms. All
types of solutions obtained, including stochastic ones, were observed experimentally.
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Introduction. The electrooptic properties of liquid crystals (LCs) have been adequately studied and de-
scribed in numerous papers [1–4]. Liquid-crystal media have found wide application in the area of data display [2].
Such applications are based on the reorientation effect of the LC director (the direction of the long axes of LC
molecules averaged over thermal fluctuations) and the crystal optic axis under the action of low-voltage electric
fields — the Freedericksz effect [1]. The time characteristics of Freedericksz reorientation, as a rule, are high and
are approximately 10–100 msec for nematic LCs (NLCs). The low response accompanying electrooptic variation
in NLCs is due to the high rotational viscosity (0.01–0.1 Pa · sec) [3], which is characteristic of almost all liquid
crystals. Therefore, it is assumed that the director reorientation is determined by the viscosity and the effective
value of the alternating electric field irrespective of its frequency. In view of this, it is concluded that high-frequency
orientation processes are impossible in LCs [5].

The objective of the present work was to study the orientational behavior of the NLC director in electric
fields consisting of several components with different directions and frequencies. It is shown that the dynamics
of the involved processes is much more difficult than “simple” Freedericksz reorientation [1]. The motion of the
director begins to depend on the amplitudes, frequencies, and phases of the applied voltage and can be undamped
multifrequency (quasiperiodic) oscillating or rotational changes of the orientation up to stochastic regimes of the
strange attractor type. The dynamics of the involved processes is not a consequence of electrohydrodynamic (EHD)
instability [4] although in some cases the observed phenomena are accompanied by macroscopic liquid flows. The
theoretical conclusions have been supported by data of preliminary experiments.

The possibility of stochastization of the NLC orientation in the absence of EHD effects was first indicated
in a paper [6], in which the interaction of a NLC with an oblique light wave of the ordinary type was studied
experimentally. Later, the possibility of occurrence of quasiperiodic and multimode regimes in models describing
experiments [6] was detected in a study [7] of deterministic equations using numerical calculations. This phenomenon
was also studied in [8].
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Fig. 1. Geometry of interaction of the NLC director with an arbitrarily directed electric field.

Although the model used in the present work is more adequate to the case of interaction of a NLC with
radio frequency alternating electric fields, it can also be treated as a certain approximation for describing harmonic
generation in light coherent fields. More precisely, this model is a first iteration that ignores the self-effect of
transmitted waves and is realizable for of |∆k| � 1/d, where |∆k| is the maximum spread of wave vectors in the
medium and d is the characteristic dimension of the orientation change.

Equations of Motion. To derive dynamic equations, we choose the interaction geometry (Fig. 1) in
Cartesian coordinates r = (x, y, z). The following notation is used: E = E(t, r) is the real vector of the electric
field in the crystal; n = n(t, r) is the unit vector (director); θ and ϕ are the polar and azimuthal angles, which are
linked to n by the relation

n = (nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ).

For the further consideration, it is convenient to introduce auxiliary unit vectors orthogonal to n:

m = (mx,my,mz) =
∂n

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ),

p = (px, py, pz) =
1

sin θ
∂n

∂ϕ
= (− sinϕ, cosϕ, 0),

(nm) = 0, (np) = 0, (mp) = 0.

For NLCs, the free-energy density F is written as [1]

F =
1
2

[
K1(div n)2 +K2(n rotn)2 +K3(n× rotn)2

]
− εa

8π
(nE)2. (1)

In the functional (1), K1,K2, and K3 are the Frank elastic constants and εa = ε|| − ε⊥, where ε|| and ε⊥ are the
parameters of the permittivity matrix, which is expressed in terms of the Cartesian components of the director ni by

εij = ε⊥δij + εaninj , i, j = x, y, z (2)

(δij is the Kronecker delta).
For simplification, we assume that in the examined range of the electric-field frequency E, the values of the

material parameters Ki, ε||, and ε⊥ are constant.
In the one-dimensional case where all sought quantities depend only on the z coordinate and time t, expres-

sion (1) is written as

F =
1
2

[
f
(∂θ
∂z

)2

+ g
(∂ϕ
∂z

)2

− εa

4π
(nE)2

]
,

f = f(θ) = K1 sin2 θ +K3 cos2 θ, g = g(θ) = sin2 θ(K2 sin2 θ +K3 cos2 θ).
(3)
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Variation of the functional (3) taking into account the relaxation terms yields a system of two nonlinear equations
for θ and ϕ:

γ
∂θ

∂t
= f

∂2θ

∂z2
+

1
2

[
fθ

(∂θ
∂z

)2

+ gθ

(∂ϕ
∂z

)2]
+
εa

4π
(nE)(mE),

γ sin2 θ
∂ϕ

∂t
=

∂

∂z

(
g
∂ϕ

∂z

)
+
εa

4π
sin θ(nE)(pE),

(4)

where fθ = ∂f/∂θ, gθ = ∂g/∂θ, and γ is the viscous parameter of the NLC. In the derivation of (4), the flexoelectric
components and the possibility of hydrodynamic flows were ignored.

The constitutive equations (4) need to be supplemented by boundary conditions at the points z = 0, L (L is
the crystal thickness). Following [4], these conditions were chosen in the form[

K
∂θ

∂z
± aθθ

]
z=0,L

= bθ,
[
K
∂θ

∂z
± aϕϕ

]
z=0,L

= bϕ, (5)

where the plus and minus refer to z = 0 and z = L, respectively, K is the averaged Frank constant, and the
parameters aθ, aϕ, bθ, and bϕ generally depend on the surface energy density of the bonding of the director to the
bounding planes, flexoelectric coefficients, and electric fields.

To close the system, Eqs. (4) should be supplemented by the Maxwell equations relating the electric fields
to the orientation n. Ignoring the conductivity of the medium, for the radio frequency range inside the sample, we
write

div (ε̂E) = 0, rotE = 0. (6)

Here ε̂ is the permittivity matrix (2). In the one-dimensional case, Eqs. (6) subject to (2) become

∂

∂z

[
ε⊥Ez + εanz(nE)

]
= 0,

∂Ex

∂z
=
∂Ey

∂z
= 0. (7)

Equations (7) are trivially integrated, and the electric fields inside the crystal are determined uniquely from specified
field magnitudes. With addition of the corresponding initial conditions on the orientation angles

θ(0, z) = θ0(z), ϕ(0, z) = ϕ0(z)

system (4) with boundary conditions (5) and the solution following from (7) becomes a closed system that describes
the interaction of NLCs with arbitrarily directed alternating electric fields in the one-dimensional case.

For fairly strong electric fields far exceeding the threshold magnitudes for Freedericksz reorientation [1],

|E|2 � E2
th = 4π3K/(L2εa)

(K is the averaged Frank elastic constant), the boundary conditions and spatial relations can be ignored in some
cases. Conditions that allow one to ignore coordinate dependences will be discussed below. After appropriate
simplifications, Eqs. (4) and (7) become a system of ordinary differential equations which depend only on time:

γ
dθ

dt
=
εa

4π
(nE)(mE), γ sin θ

dϕ

dt
=
εa

4π
(nE)(pE),

Ez =
ε||E

ex
z − εa cos θ sin θ(Ex cosϕ+ Ey sinϕ)

ε⊥ + εa cos2 θ
, Ex = Eex

x , Ey = Eex
y

(8)

[θ = θ(t) and ϕ = ϕ(t) are angle functions at the center of the sample (z = L/2)]. Here we assume the initial
homeotropic orientation θ(0) = 0 and spatial homogeneity of the electric field E = E(t); Eex(t) is the specified
magnitude of the electric field in vacuum.

Electric Field Lying in One Plane. Analytical Solution. It seems impossible to solve systems (8)
and (4) analytically, and, hence, this will be done numerically. We first consider some particular cases that allow
for analytical solutions.

If the electric field vector E = E(t) lies in one plane, for example, (x, y), then, for θ ≡ π/2, ϕ = ϕ(t), and
E = {Ex(t), Ey(t), 0} instead of system (8), we obtain one equation for the azimuthal angle ϕ (Ez ≡ 0):

γ
dϕ

dt
=
εa

4π
(Ex cosϕ+ Ey sinϕ)(−Ex sinϕ+ Ey cosϕ). (9)
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In the case of a harmonic dependence E(t) = A{sin (ωt + ψx), sin (ωt + ψy), 0}, namely a rotating (circular) field
Ex = A cosωt, Ey = sinωt (ψx = π/2, ψy = 0), we obtain

dϕ

dt
= −εaA

2

8πγ
sin [2(ϕ− ωt)]. (10)

An identical equation can be written for the polar angle θ when considering the case of an alternating electric field
lying, for example, in the plane (x, z). For this, it is necessary to set θ = θ(t), ϕ ≡ 0, and E = {Ex(t), 0, Ez(t)}
and to ignore the additive to the z component of the field that is proportional to εa and follows from condition (7).

Equation (10) is integrated analytically. We first make the replacement α = 2(ϕ− ωt) and write (10) as

dα

dτ
= −2(1 + δ sinα).

As a result, we obtain the solution

ϕ(τ) =


τ − arctan [δ + Ω tan Ω(τ − C)], δ2 < 1, Ω2 = 1− δ2,

τ − arctan [(τ − 1− C)/(τ − C)], δ2 = 1, Ω2 = 0,

τ − arctan [δ − Ω tanh Ω(τ − C)], δ2 > 1, Ω2 = δ2 − 1,

(11)

where τ = ωt is dimensionless time and δ = εaA
2/(8πγω). It should be noted that relation (11) contains a term

linear in time that leads to continuous (on the average) rotation of the director.
For comparison, we give the solution of Eq. (9) for a field E with a constant direction in space: Ex = A sinωt,

Ey = A sinωt (ψx = ψy = 0). Equation (9) implies

dϕ

dt
=
εaA

2

4πγ
sin2 ωt cos 2ϕ. (12)

Equation (12) is also easy to integrate, and its solution is written as

ϕ = −(π/4)± arctan {C exp [δ(2τ − sin 2τ)]}, (13)

where C is the integration constant; the dimensionless time τ and the parameter δ are determined as in the previous
case. Relation (13) describes the nonthreshold Freedericksz reorientation in an alternating electric field.

Let us consider the deviations of the director from the mean stationary state ∆ϕ = ϕ(t)−ϕst for both versions
of field configuration in the steady-state regime (τ →∞) and under the condition δ2 � 1 or ω � εaA

2/(8πγ). For
a rotating field, from (11) we obtain the relation

∆ϕ ≈ εaA
2

8πγω
sin 2ωt+

1
ω

(εaA
2

8πγ

)2

t, (14)

which contains oscillating terms and terms increasing linearly in time. For the second case, from (13) we have

∆ϕ ≈ εaA
2

4πγω
exp

(
− εaA

2

4πγ
t
)

sin2 ωt. (15)

From the asymptotic relation (14) and (15), it is obvious that the oscillation amplitude of the director is
finite in time in the case of a circular field and tends exponential to zero as t → ∞ in a field with a constant
direction. The undamped oscillating behavior of the orientation, as well as the continuous rotation of the director
with a frequency proportional to the supplied voltage to the fourth power is a qualitative feature that distinguishes
the case (14) from the Freedericksz transition (15).

The possibility of continuous rotation of the director was found and studied in [9] for the interaction of
a homeotropically aligned NLC with a circularly polarized light wave. Taking into account the approximations
stipulated in the introduction, solution (14) considered in the present paper is largely equivalent to the results given
in [9].

Figure 2 shows curves of ϕ(τ) for both field configurations and different values of δ. Curve 1 is the reorien-
tation in a field with a constant direction, and curve 4 is obtained by solving the partial differential equations (4)
for the center of the sample ϕ(τ) ≡ ϕ(τ, L/2). The spatial dependence implied by the finiteness of the elastic forces
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Fig. 2. Azimuthal orientation angle of the 5SV NLC director versus the dimensionless time τ for the case
of an electric field lying in the plane (x, y): 1) ψx − ψy = 0 and δ = 0.5; 2) ψx − ψy = π/2 and δ = 0.3;
3) ψx − ψy = π/2 and δ = 3; 4) ψx − ψy = π/2 and δ = 3 (solution taking into account the elasticity of
the medium).
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Fig. 3. Transmission function versus dimensionless time for a rotating field with ψx−ψz = π/2 and δ = 3.

acting in the NLC is thus taken into account. Boundary conditions (5) were chosen for the homeotropic orientation
and had the form

θ
∣∣∣
0,L

= 0,
∂ϕ

∂z

∣∣∣
0,L

= 0.

The field amplitude was twice the threshold value (|E| = 2Eth). As can be seen from comparison of curves 3 and 4,
the difference lies only in a small change in the slope of the average values of ϕ to the τ axis. Figure 3 shows the
calculated transmission function T (τ) in the crossed polarizers of a NLC (for a 5SV sample of thickness L = 150 µm
ignoring elasticity) in a rotating field with δ = 3. The smooth envelope T (τ) following from (11) is caused by the
director rotation. The high-frequency component which also follows from (11) is defined by the oscillating term.

In the case of a circular field in the plane (x, z), the solutions taking into account and ignoring the elasticity of
the NLC differ more significantly than in the previous example. Figure 4 gives curves of θ(τ) obtained by integrating
the ordinary differential equations (8) and by solving the partial differential equations (4) for θ(τ) ≡ θ(τ, L/2). The
boundary conditions for (4) were specified as in the previous case. The change in the z-component of the field was
ignored, and the field amplitude was 5.5 times larger than the threshold value. Curve 2 in Fig. 4, plotted with
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Fig. 4. Polar orientation angle of the 5SV NLC director versus dimensionless time [ignoring elasticity
(1) and taking into account elasticity (2)] for the case of a circular electric field (ψx−ψz = π/2 and
δ = 3) lying in the plane (x, z).

allowance for the elasticity of the medium, oscillates with the same frequency and amplitude, as curve 1, and, on
the average, reaches the stationary level determined by the value of δ, elastic constants, and crystal thickness L.
As follows from numerical analysis (and qualitative considerations), the stationary level is reached always, even for
an infinite excess of the field amplitude over the threshold magnitude.

The results of interaction of a NLC with a rotational field may be the basis for designing a high-frequency
modulator (switch) of light using conventional “slow” NLC as the working medium.

The director rotation following from solution (14), was found experimentally. A NLC sample with diminished
bond energy on the boundaries placed in an electric field orthogonal to the z axis (the electrode system on each
surface was a configuration in the form of two or several parallel transparent bands, which in the assembly of the
sample were perpendicular to each other) was exposed to a He–Ne laser, and the radiation transmitted through an
analyzer was received by a photodiode. The voltage from one generator was supplied through a phase shift system
to the electrodes of the sample. If necessary, transformers were switched into the tangential-field circuits to increase
the field amplitude. At the moment when the phase difference of the applied electric fields approached π/2, the
intensity of the transmitted radiation began to pulsate. The rotation period of the director was calculated from
the oscillation period. The high-frequency component was appreciable up to ν ∼ 1 MHz (ω = 2πν). Quantitative
agreement within the framework of the simple model (9) was not obtained. In the experiment, we reliably detected
pulsations of the transmitted radiation at a phase shift of the applied fields close to π/2, a sharp increase in the
rotational velocity of the director with increase in the supplied voltage and, hence, its decrease with increase in the
working frequency ω. This result agrees qualitatively with the relations following from (14). The measurements
were performed in the frequency range ν = 10–5 · 106 Hz with an effective voltage of up to 50 V.

Dynamics of Volume Orientation of NLCs. Numerical Calculation. The solutions of system (8)
for the general case were found using numerical calculations. The magnitudes of the electric fields for the initial
homeotropic orientation were specified as

Ex = Ex0 sin (2πνxt+ ψx), Ey = Ey0 sin (2πνyt+ ψy),

Ez =
ε||Ez0 sin (2πνzt+ ψz)− εa sin θ cos θ(Ex cosϕ+ Ey sinϕ)

ε⊥ + εa cos2 θ
.

(16)

The z component of the field takes into account the anisotropic component following from condition (7) of the
Maxwell equations; ωi = 2πνi. For calculations, it is convenient to write (8) in dimensionless form:

dθ

dτ
= δ(nA)(mA), sin θ

dϕ

dτ
= δ(nA)(pA),

θ(0) = θ0, ϕ(0) = ϕ0,

(17)
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TABLE 1
Table of Initial Parameters

Figure number NLC Type ax : ay : az ωx : ωy : ωz ψx, ψy , ψz δ

5, 7 MBBA 1 : 1 : 1 2π(1.25 : 1 : 1) 0, π/2, 0 −1.5
6, 10 5SV 1 : 1 : 1 1 : 1.1 : 1 0, 0, π/2 0.65
8, 9 5SV 1 : 1 : 1.5 2π(1 : 1.1 : 1) π/2, 0, 0 30
11a MBBA 1 : 1.1 : 1 2π(1.25 : 1.1 : 1) 0, π/2, 0 −5
11b MBBA 1 : 1 : 1.06 2π(1.2 : 1 : 1) 0, π/2, 0 −2
11c MBBA 1 : 1 : 1 2π(1 : 1.1 : 1) π/2, 0, 0 −1.45
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Fig. 5. Polar (θ) and azimuthal (ϕ) orientation angles of the director versus dimensionless time
(curves 1 and 2, respectively).

where θ0 and ϕ0 are initial conditions. The normalizing factors are the root-mean-square amplitude of the field
A = (E2

x0 + E2
y0 + E2

z0)
1/2 and the mean frequency ν0 = (νx + νy + νz)/3. In this case,

Ax = ax sin (2πNxτ + ψx), Ay = ay sin (2πNyτ + ψy),

Az =
ε||az sin (2πNzτ + ψz)− εa sin θ cos θ(Ax cosϕ+Ay sinϕ)

ε⊥ + εa cos2 θ
,

(18)

where ax = Ex0/A, ay = Ey0/A, az = Ez0/A; Nx = νx/ν0, Ny = νy/ν0, Nz = νz/ν0; ψx, ψy, and ψz are phase
additives, τ = ν0t is dimensionless time, and δ = εaA

2/(4πγν0) is a parameter.
The solutions of Eqs. (17) are diverse in nature. Depending on the parameters of the problem, the following

regimes are observed: attainment of a stationary solution (an analog of the nonthreshold Freedericksz transition),
periodic, quasiperiodic (multimode), and stochastic regimes of the strange attractor type. We consider several some
dynamic regimes of orientation that provide a vivid illustration of the complexity of the calculated dependences.
Along with the obtained functions θ(τ) and ϕ(τ), the motion of the end of the vector n on a unit sphere or the
motion trajectory plotted in the plane of θ and ϕ (an analog of the phase space) provide a detailed picture of the
behavior of the solution in time. The initial parameters used in the calculations and to plot the corresponding
curves are presented in Table 1.

Below, we give solutions of system (17) for two types of NLC: 5SV (εa > 0) and MBBA (εa < 0). As
can be seen from the figure, the behavior of the orientation in time is described by complex quasiperiodic and
stochastic dependences similar to the strange attractor solutions [10]. Depending on the initial parameters, the
director can have several limiting states (limiting cycles) [10]), around which it performed vibrational or rotational
motion with periodic or quasiperiodic transitions from one cycle to another (Fig. 5). In the above example with a
periodic change in the orientation state, the orientation angles are superimposed by a high-frequency component,
whose amplitude increases considerably at the moment of transition from one state to another. The average values
of neighboring levels in ϕ(τ) differ from each other by the value ±π, and the sign of the jump is accidental. The
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Fig. 6. Azimuthal angle ϕ versus dimensionless time τ for various initial conditions: 1) θ0 = 0.001
and ϕ0 = 0; 2) θ0 = 0.1 and ϕ0 = 0; 3) θ0 = 0.1 and ϕ0 = 0.1.
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Fig. 7. Fourier spectrum |F [ϕ(τ)]| versus dimensionless frequency.

maximum values of θ(τ) are reached at the tops of the triangles and are approximately equal to π/2. In contrast
to ϕ(τ), the high-frequency amplitude of the function θ(τ) is more pronounced against the background of smoother
variations.

In such regimes, the solutions of the equations begin to depend on the initial conditions. As an example,
Fig. 6 gives curves of ϕ(τ) [the dependence θ(τ) is not shown to save space] plotted for various conditions at the
zero time θ(0) and ϕ(0). As can be seen from the figure, at a time close to τ = 0, the course of the curves ϕ(τ) for
different initial conditions practically coincides, but at a certain time, the system “recollects” its initial state and
sharply changes the motion trajectory. The behavior of the functions θ(τ) is similar.

The frequency spectrum versus the dimensionless frequency N = ν/ν0 (a Fourier image |F [ϕ(τ)]| is chosen)
of nearly stochastic solutions becomes broadband; an example of the spectrum is given in Fig. 7. From the figure
it is evident that in the regions of the difference frequency ∆N = Nx −Nz and the total frequency Nx +Nz there
are distinct peaks and the amplitude of the difference harmonics is approximately 8–10 times larger than that of
the total harmonics. For large values of δ, the time dependences θ(τ) and ϕ(τ) become complicated and periodic
in nature (Fig. 8). The Fourier spectrum (Fig. 9) becomes less dissected and have distinct equidistant harmonics
spaced 2∆N apart. The calculated transmission functions for a sample in a stochastic regime are more chaotic in
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Fig. 8. Polar and azimuthal orientation angles of the director versus
dimensionless time (curves 1 and 2, respectively).
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Fig. 9. Fourier spectrum |F [ϕ(τ)]| versus dimensionless frequency.

appearance (Fig. 10) than the initial solutions θ(τ) and ϕ(τ). This is explained by additional nonlinear dependences
in both the transmission function itself and in the general form [11]:

T (τ) = T [θ(τ), ϕ(τ)] = cos2 χ− sin 2ϕ sin 2(ϕ− χ) sin2(∆/2).

For our case, the phase advance difference ∆ is calculated by the formula

∆ = 2π
L

λ

( n⊥n||√
n2
⊥ cos2 θ + n2

|| sin
2 θ
− n⊥

)
,

where λ is the wavelength of the normally incident diagnostic radiation, n|| and n⊥ are the main values of the
refraction index for the ordinary and extraordinary waves, respectively, and χ is the angle between the polarizer
and analyzer for the polarizer direction along the x axis.

The motion trajectories on a plane in the phase space are given in Fig. 11. As well as the functions θ(τ) and
ϕ(τ), the given curves are rather complex in shape.

We note that the given solutions do not exhaust all kinds of dynamic behavior of the orientation obtained
from (17). It is impossible to give the full set of regimes within the scope of one article, first of all because of a
large number of initial parameters (in our case taking into account normalization, they are seven).
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Fig. 10. Fragment of the transmission function versus dimensionless time.

Preliminary analysis shows that obtaining nondeterministic solutions requires, first of all, the presence of
volume deformation of the NLC orientation or the presence of all three components of the field Ex 6= 0, Ey 6= 0,
and Ez 6= 0. This conclusion also follows from the mathematical statement on the absence of stochastic solutions in
the systems described by one ordinary differential equation of the first order with an explicit time dependence [10].
In the absence of one of the field components Ei = 0 (i = x, y, z), system (8) in the steady-state regime reduces
to one equation for the deflection angle of the director lying in the plane of variation of E. In addition, in the
radio frequency range, it is necessary that the electric fields contain components that have at least two different
frequencies: ωi 6= ωj = ωk (i, j, k = x, y, z; i 6= j 6= k). This requirement can be violated if the NLC is exposed
to a light radiation because the nonlinear relation between the ordinary and extraordinary waves inside the crystal
is more complex than condition (7) [7]. A more detailed consideration of this problem is beyond the scope of the
present paper.

The experiments performed in the radio frequency range confirm the theoretical conclusions on the existence
of deterministic and stochastic regimes in the orientation of the NLC director. In these experiments, unlike in
experiments with a single-frequency electric field lying in one plane, two independent generators were used and the
electrode circuit of the sample allowed fields to be produced in three orthogonal directions. In the experiments, the
diagnostic radiation was focused into the sample and then projected onto a remote matte screen. At the moment of
occurrence of instability, a region of time-varying light intensity or several regions pulsating almost independently
of each other formed in the light spot. In this case, the intensity of the entire spot integrated over the cross section
remained unchanged or oscillated weakly in time. Visually, the pulsation region became uniformly illuminated and
depolarized. All external changes depended on the position of the point through which the diagnostic radiation
transmitted, time, and temperature.

The experimental transmission curve T (t) given in Fig. 12 was obtained as follows (the parameters of the
5SV sample 10 µm thick and the external fields correspond to the conditions of Fig. 6). The magnified light spot
was superimposed by a diaphragm with a small opening, behind which there was a photodiode (or a photoelectron
multiplier) connected to a recording device. The recorded transmission curves outwardly resemble a stochastic
regime and depend on the position of the center of the diaphragm on the spot. Similar phenomena were observed
in the previous simpler cases of a single-frequency, in-plane rotating field.

Discussion of Results. Analysis of the transmission function did not yield quantitative agreement between
calculation and experimental data. The main reason for the differences lies in ignoring the spatial dependence of
the electric fields, the possibility of occurrence of hydrodynamic flows (as a result of low-frequency components
in the orientation dynamics), and flexoelectric effects. We note that accounting for the spatial dependence of the
orientation n by numerical integration of the partial differential equations (4) and (7) led to even greater complexity
and diversity of solutions.
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Fig. 11. Motion trajectory on the plane (θ(τ), ϕ(τ)).
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Fig. 12. Transmission function T (t) obtained in the experiment (parameters the same as in Fig. 6).

After a proper change of variables, the discrete version of the particular case of Eqs. (17) and (18) becomes
the sequence studied in [12]. The equations leading to this sequence provides an approximate description of the
system of three nonlinear interrelated oscillators. In this case, the constructed Poincaré sections are maps of an
abstract torus in the four-dimensional phase space (θ̇, ϕ̇, θ, ϕ) onto a two-dimensional plane. In [12], the presence of
chaotic attractor solutions is proved by numerical calculations and the constructed motion trajectories are similar
in complexity to the sections obtained in the present study.

The specificity of the attractor behavior of the solutions and the high sensitivity of the discrete version of the
equations to the initial conditions and input parameters (for example, in [12], the amplitude and phase additives
in (18) were chosen in a random manner) did not allowed us to make a precise quantitative comparison of the results
of [12] with the calculations of the present study.

In conclusion, we note that the present research was motivated by studies in the area of harmonic generation
during interaction of polymer media with coherent radiation. This issue for liquid crystals has been studied exper-
imentally [13, 14] and theoretically [15]. In the cited studies there was a considerable spread in experimental data.
In [15], the generation of the second harmonic of NLCs was treated as a consequence of the Ericksen–Leslie contin-
uum equations and the Maxwell equations. The disturbance of the central symmetry that arose in that case was
explained by the light-induced deformation of the crystal structure. The solution obtained in [15] was the result of
a linear approximation and did not completely reflect the entire process involved in this interaction. The attempt of
the authors of the present paper to numerically study the nonlinear interaction regimes of multiwave radiation with
NLCs gave an unexpected result. From analysis of the factors responsible for seemingly nonphysical solutions, it
was concluded that this effect is due to the properties of NLC media, which are described by constitutive equations.
In view of this, a simplified mathematical model was chosen (modified Maxwell equations), which is nevertheless
close to the model of interaction of NLCs with radio frequency alternating electric fields.

Conclusions. The studies performed revealed a physical object of nonlinear dynamics — an NLC in a
multicomponent alternating electric field. This object was described by a dissipative system of ordinary differential
equations, which is one more example of the well-known deterministic equations leading to chaotic oscillations [10].
In view of this, the possibility of stochastization of the orientational state of NLCs should be taken into account in
considering the interaction of liquid-crystal media with multicomponent and multifrequency electric fields.

We thank G. N. Grachev for support in the experiments and the work as a whole and V. F. Kitaeva and
A. S. Zolot’ko from the Lebedev Physical Institute of the Russian Academy of Sciences for useful discussions.
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